您选择的条件: Zhigang Chen
  • Fractal-like photonic lattices and localized states arising from singular and nonsingular flatbands

    分类: 光学 >> 量子光学 提交时间: 2023-02-23

    摘要: We realize fractal-like photonic lattices using cw-laser-writing technique, thereby observe distinct compact localized states (CLSs) associated with different flatbands in the same lattice setting. Such triangle-shaped lattices, akin to the first generation Sierpinski lattices, possess a band structure where singular non-degenerate and nonsingular degenerate flatbands coexist. By proper phase modulation of an input excitation beam, we demonstrate experimentally not only the simplest CLSs but also their superimposition into other complex mode structures. Furthermore, we show by numerical simulation a dynamical oscillation of the flatband states due to beating of the CLSs that have different eigenenergies. These results may provide inspiration for exploring fundamental phenomena arising from fractal structure, flatband singularity, and real-space topology.

  • Topological phenomena demonstrated in photorefractive photonic lattices

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological photonics has attracted widespread research attention in the past decade due to its fundamental interest and unique manner in controlling light propagation for advanced applications. Paradigmatic approaches have been proposed to achieve topological phases including topological insulators in a variety of photonic systems. In particular, photonic lattices composed of evanescently coupled waveguide arrays have been employed conveniently to explore and investigate topological physics. In this article, we review our recent work on demonstration of topological phenomena in reconfigurable photonic lattices established by site-to-site cw-laser-writing or multiple-beam optical induction in photorefractive nonlinear crystals. We focus on the study of topological states realized in the celebrated one-dimensional Su-Schrieffer-Heeger lattices, including nonlinear topological edge states and gap solitons, nonlinearity-induced coupling to topological edge states, and nonlinear control of non-Hermitian topological states. In the two-dimensional case, we discuss two typical examples: universal mapping of momentum-space topological singularities through Dirac-like photonic lattices and realization of real-space nontrivial loop states in flatband photonic lattices. Our work illustrates how photorefractive materials can be employed conveniently to build up various synthetic photonic microstructures for topological studies, which may prove relevant and inspiring for exploration of fundamental phenomena in topological systems beyond photonics.

  • Giant Enhancement of Nonlinear Harmonic Generation in a Silicon Topological Photonic Crystal Nanocavity Chain

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Strongly enhanced third-harmonic generation (THG) by the topological localization of an edge mode in a Su-Schrieffer-Heeger (SSH) chain of silicon photonic crystal nanocavities is demonstrated. The edge mode of the nanocavity chain not only naturally inherits resonant properties of the single nanocavity, but also exhibits the topological feature with mode robustness extending well beyond individual nanocavity. By engineering the SSH nanocavities with alternating strong and weak coupling strengths on a silicon slab, we observe the edge mode formation that entails a THG signal with three orders of magnitude enhancement compared with that in a trivial SSH structure. Our results indicate that the photonic crystal nanocavity chain could provide a promising on-chip platform for topology-driven nonlinear photonics.

  • Robust moir\'e flatbands within a broad band-offset

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Photonic analogs of the moir\'e superlattices mediated by interlayer electromagnetic coupling are expected to give rise to rich phenomena such as nontrivial flatband topology. Here we propose and demonstrate a scheme to tune the flatbands in a bilayer moir\'e superlattice by employing the band-offset. The band-offset is changed by fixing the bands of one slab but shifting that of the other slab, which is realized by changing the thickness of latter slab. Our results show that the band-offset tuning not only makes a few flatbands emerge and disappear, but also leads to two sets of robustly formed flatbands. These robust flatbands form either at the AA-stack site or at the AB-stack site, enabling the construction of a tunable, high-quality, and doubly-resonant single-cell superlattice. Moreover, we develop a diagrammatic model to give an intuitive insight into the formation of the robust flatbands. Our work demonstrates a simple yet efficient way to design and control complex moir\'e flatbands, providing new opportunities to utilize photonic moir\'e superlattices for advanced light-matter interaction including lasing and nonlinear harmonic generation.

  • Topological flatband loop states in fractal-like photonic lattices

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Noncontractible loop states (NLSs) are recently realized topological entity in flatband lattices, arising typically from band touching at a point where a flat band intersects one or more dispersive bands. There exists also band touching across a plane, where one flat band overlaps another all over the Brillouin zone without crossing a dispersive band. Such isolated plane-touching flat bands remain largely unexplored. For example, what are the topological features associated with such flatband degeneracy? Here, we demonstrate for the first time to our knowledge nontrivial NLSs and robust boundary modes in a system with such degeneracy. Based on a tailored photonic lattice constructed from the well-known fractal Sierpinski gasket, we theoretically analyze the wavefunction singularities and the conditions for the existence of the NLSs. We show that the NLSs can exist in both singular and nonsingular flat bands, as a direct reflection of the real-space topology. Experimentally, we observe directly such flatband NLSs in a laser-written Corbino-shaped fractal-like lattice. This work not only leads to a deep understanding of the mechanism behind the nontrivial flatband states, but also opens up new avenues to explore fundamental phenomena arising from the interplay of flatband degeneracy, fractal structures and band topology.

  • 运营单位: 中国科学院文献情报中心
  • 制作维护:中国科学院文献情报中心知识系统部
  • 邮箱: eprint@mail.las.ac.cn
  • 地址:北京中关村北四环西路33号
招募志愿者 许可声明 法律声明

京ICP备05002861号-25 | 京公网安备11010802041489号
版权所有© 2016 中国科学院文献情报中心